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INTRODUCTION

"Forecasting and Time Series Model Types of 111 Economic Time Series"

is a chapter to be published in a book Major Time Series Methods and Their

Relative Accuracy by S. Makridakis, A. Andersen, R. Carbone, R. Fildes,

M. Hibon, R. Lewandowski, J. Newton, E. Parzen, and R. Winkler, Wiley: London,

1983. It reports in detail the forecasting procedure followed by Parzen and

Newton in their participation in the forecasting "competition" whose results

are reported in Makridakis, S., et al (1982) "The Accuracy of Extrapolation

(Time Series) Methods: Results of a Forecasting Competition," Journal of

Forecasting, 1, 111-153.

The joint paper did not explicitly draw any conclusions concerning

which methods performed best. Commentaries on the joint paper (to appear in

1983 in the Journal of Forecasting) seem to acknowledge the excellence of

the forecast errors obtained by Parzen and Newton. David J. Pack points out

the desirability of increasing the numeracy of the joint paper's Table 2(b),

which provides MAPE measures of how well each forecasting method performed

for the entire 111 series sample [reproduced in Pack's Exhibit 1]. Pack's

Exhibit 2 is the same table with methods ordered to the "average of

forecasting horizons 1-12" column, and all MAPE's divided by 13.4, the minimum

MAPE in the ordering column.

We reproduce Pack's Exhibits 1 and 2. Readers must draw their own

conclusions concerning the superiority of the forecasting methods used by

Parzen and Newton. Our contribution to the commentaries on the joint paper

is printed at the end of this report with the title "How to Learn from the JoF

Competition."

dims
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1. Introduction
"Is it possible to put an end to the argument of what

forecasting methods are better and under what circumstances?", is
the auestion raised by Professor Spyros akridakis in several
stimulating papers (1976), (1978), (1979). He has organized a
"forecasting competition" to which various forecasting experts
would contribute forecasts of 111 economic and business time series
which he has collected. This paper reports the results of our
analysis of these series, based on the general approach to time
series modeling, spectral analysis, and forecasting developed by
Parzen, with the collaboration of Newton.

An appendix describes the theory of univariate time series
modeling and forecasting used in this study. The main text
summarizes the diverse models which are encompassed by our
approach, and which arise in the study of the 111 time series being
forecasted.

The methods of time series mode'ling and forecasting applied in
this paper can be applied automatically but they are not rote
formulas, since they are based on a flexible philosophy which
provides several models for consideration and diverse diagnostics
for qualitatively and quantitatively checking the fit of a model
(see Parzen (1979), (1980), (1981)). The models considered are
called ARARMA models because the model computed adaptively for a
time series is based on sophisticated time series analysis of ARMA
schemes (a short memory model) fitted to residuals of simple
extrapolation (a long memory model obtained by parsimonious "best
lag" non-stationary autoregression).

A consumer of time series forecasting and/or modeling methods
must evaluate the value of a proposed procedure in the context of
the actual time series with which he, or she, is concerned. Our
approach aims to be applicable in all the diverse fields to which

time series analysis is being applied.
A major problem of time series forecasting ..is whether long

range forecasting and short range forecasting'require different
methods to obtain satisfactory forecasts. This paper describes
iterated models which provide qualitative diagnostics as to the
possibility of long range forecasts (by diagnosing whether the time
series is long memory). Both long range and short ranke forecasts
are provided by a model obtained by fitting a parsimonious
non-stationary autoregression whose residuals Y(t) are modeled by a
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stationary autoregression.
The modeling procedure is both automatic and flexible. In

particular, two model orders are determined for i(t) and we would
recommend computing and comparing forecasts from both models.

This paper aims to illustrate the results one obtains by
typical graphs, and to describe the time series model types that
one should expect to encounter when dealing with many economic time
series.
2. Iterated Models Approach to Time Series Analysis

The problem of forecasting future values of a time series from
observations of its past values has an extensive literature which
propose many different approaches. The approach adopted here aims
to fit automatically to a time series sample not one but several
models. The class of models considered is suitable for time series
modeling, spectral analysis, and forecasting and for time series
encountered by researchers in the physical sciences, engineering
sciences, biological sciences, and medicine, as well as to the
social sciences, economics, and management sciences.

A time series may be predictable for a long time in the future
or only over a limited future. We say the former has "long memory"
and the latter "short memory". A time series with long memory
requires a "non-stationary" model with periodic, cycle, and trend
components. A time series with short memory requires a
"stationary" model which is a linear filter relating the time
series to its innovations or random shocks. The linear filter is
an AR, MA, or ARMA filter (autoregressive, moving average, or mixed
autoregressive-moving average).

The model we fit to a time series Y(.) is an iterated model

Y(t) -0- Y(t) -0-- M(t)

If needed to transform a long memory series Y to a short memory
series Y, Y(t) is chosen to satisfy one of the three forms

YMt = Y<t) - W() M~-1),()

II

Y(t) = Y(t) - 0{ 1 (t-1) - €2 Y(t-2) . (2).l

:M=Y Y(t -T-) - Y(t-T (3) |

Usually Y(t) is short memory; then it is transformed to a white
noise, or no memory, time series c(t) by an approximating K
autoregressive scheme AR(m) whose order m is chosen by an order
determining criterion (we use CAT, introduced by Parzen
019714),01977)).

In the present study, Y(t) was found to be always short
memory. Tt is then modeled by a stationary autoregressive scheme.
T' is argued by Parzen that approximating AR schemes suffice for
spectral analysis and forecasting. Only for model interpretation
is it desirable to fit an ARMA scheme. In the present study not
more than 15 percent of the time series could be regarded as
requiring an ARMA scheme.
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To determine the best lag I , we use non-stationary
autoregression; either fix a maximum lag M and choose T as the
lag minimizing over all T

T
E [Y(t) - *(T) Y(t-T))

t-M+1

or choose i as the lag minimizing over all T

T 2 T 2
E (YMt) - *(T) Y(t-r)) Z E y (t)

tT +I t=T+1

For each T, one determines O(T), and then one determines (the
optimal value of T) as the value minimizing

T T
Err (T) = {Y(t) - *(T) Y(t-T)) 2  1 y y2(t)

t=M+1 t=M+1
orT T y

or22
Err (T) E {Y(t) - *(t) Y(t-T)) 4 Y (t)

t=T+1 t=T+1

The decision as to whether the time series is long memory or not is
based on the value of Err(i). An adhoc rule we use is if Eff(i) <
B/T, the time series is considered long memory. In the present
study all time series were fudged to be long memory by this
criterion. When this criterion fails one often seeks
transformations of the form of (2) or (3), using semi-automatic
rules described in the appendix.

For the maximum lag M of non-stationary autoregression, the
following rules were adopted in this study: M z 2 for yearly
series, M = 5 for quarterly series, M = 15 for monthly series.
3. Forecasting Formulas

For forecasting purposes it suffices to adopt for Y(t) a
stationary autoregressive model of suitable order m whose
coefficients GI , ... , aM are estimated by Yule Walker equations in
the correlation function &(v) of Y(t). In this paper the model
adopted for all time series was of the form

Y(t) = Y(t) - *(T) Y(t-T)

Yt) +a (t-1) + ... +C, Y(t-m) =C(tI m
The residual variances are denoted

T T
T -2 T 2

RVY = y (t)+ E y(t)
t=M+1 t-M+1

T 2 T -2
RVYT- I (t) (t)

t=T+1 t-T+l

The last 18 points of the graphs of Y and 7 represent not
observed values of these series but forpcasted values of horizons h
= 1 to 18. The mathematical procedure by which they are derived is
as follows.
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Let

Y (t+hlt) - E{Y(t+h)IY(t), Y(t-1), ... }

denote the predictor of Y(t~h) given values Y(t), (t-1),
From the equation

Y(t+h) = (-) Y(t-T+h) + Y(t+h)

one obtains, by condi.ioning with respect to Y(t), (t-1),
Y (t+hlt) =(T) YV(t-T+h t) + P(t4hjt)

To obtain a formula for forecasts of Y when we have fitted an

AR(m) to Y:

Y(t) + a1 Y(t-1) + ... + a Y(t-C) = (t)

write

Y(t+h) + a I Y(t+h-1) + ... + a Y(t+h-m) = c(t+h)

i (t+hlt) + a I YV(t+h-1jt) + ... + a Y' (t+h-mlt) = 0

One can now compute Y1 (t+h/t) recursively for h = 1, 2, ... , V
using the fact that

(t+jIt) = Y(t+j) if j< 0

For example,

-Yt(t+lt) = ,1 Y(t) + ... + aM Y(t-m+l)

Then one can compute Y1'(t+h/t) recursively for h 1, 2, ... using

the fact that

Y1(t+j t) = Y(t+j) if j< 0

For large values of h, one expects YU(t+h/t) 0 . Then

Y1'(t+hjt) - (T) Y"(t+h-lt)

Wheno(T) > 1, this does not damp down to zero, and provides the
long term-predictability apparent in many of the series.
4. Summary of Iterated Models Fitted to 111 Time Series

Table I describes the lags of the most significant lag
non-stationary scheme for Y(t). For 60% of the monthly series,

the annual period (i = 12) was most important; only 26
percent of the quarterly series had an annual period (T= 4).

The AR character of the residual series Y(t)..are described in
Table II. Order m = 0 indicates white noise (or no memory); 60 %
of the yearly series obey the "naive" model t(t) = c(t), white
noise.

Table III lists the names of 33 series arbitrarily chosen from
the set of III series to represent typical series. We select this
small number of series to discuss in detail. The different types
of time series which can be diagnosed by our approach to time
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series modeling and forecasting are illustrated by the results in

Table IV and the graphs of Y and Y for the series listed in Table
III.

Table IV summarizes the basic model diagnostics of a time
series Y(t). These are length; most significant non-stationary
autoregressive lagr, and coefficients O(T); the residual variance
RVY of this non-stationary AR scheme; the best orders (denoted CAT
1 and CAT 2) of approximating AR schemes for Y(t), their horizons
HOP 1 and HOR 2, and the residual variance RVYT of the best
approximating AR Scheme.

Some ARMA models for quarterly time series were:
OA Y = (I-1.0L 4 )y, (I-.74L)Y = (I-.85L4 ),
OH Y = (I-1.02L)Y, (I-.29L4 )y = (I-.38L3 )c

Some ARMA m? els for monthly time series were:
MA Y = (I-1.02L )Y, (I-.41L+.32L12)y (I-.42L+•31L 5 )c
MF Y = (I-.97L)Y, (I+.31L10 )Y = (I-.49)c
t4J Y = (I-1.08L)Y, (I-.75L-•21L3 )y (I-54L1 2 )c
MN Y= (I-1.04L 2 )Y, (I-.29L2 -. 28L3 -. 27L0l..30L1 3 )y (I-.42L12 )c

MR Y = (I-1.05L1 2)Y, (I-.21L5-.41L 6 )y = (I-.55L1 2 )c

Table III. Typical Series for Detailed Discussion
(Y,O,M are the prefixes of Yearly,
Ouarterly and Monthly Series Respectively).

YA Machinery and Equipment (YAC 17)
YB National Product and Expenditure-Residential

Construction (YAC 26)
YC Population Movement Male Death (YAD 6)
YD Crude Birth Rates (YAD 15)
YE Deaths, Analysis by Age and Sex, All Ages,

United Kingdom (YAD 24)
OA Industrial Production: Textiles (ONIl)
OB Industry Germany (ONIIO)
OC Company Data Germany (ONM15)
OD Company Data (ONM6)
OF Industrial Production: Durable Manufactures (QRC13)
OF Industrial Production: Total Austria (QRC22)
OG Value of Manufacturer's New Orders for Consumer Goods (QRC4)
OH Per Capita GNP in Current Dollars (ORG13)
OT Total Industrial Production (ORG4)
MA Company Data (MNB11)
MB Company Data (MNP2)
MC Company Data (MNB20)
MD Company Data (tNB29)
ME Company Data USA (MNB 38)
MF Company Data UK (MNB47)
MG Company Data (HNB56)
MH Company Data (MNB65)
MI Textiles - Quoted at Paris Stock Exchange (MNC17)
MJ General Index of the Industrial Production (MNC26)
MF Reserves - Danemark (MNC35)
ML New Private Housing Units Started Total USA (MNC44)
W1 Industrial Production Spain (MNG28)
MN Industrial Production: Finished Investment



Goods Austria (HN037)
NO Aluminium Production Netherlands (MNI103)
HP Lead Production Canada (HNI122)
N0 Production Tin Thailand (1N122)
MR Industrie France(4N113)
MS Motor Vehicles Production Canada (NI131)
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Appendix

UNIVARIATE TIME SERIES MODELING AND FORECASTING

AUTOMATIC APPROACHES USING ARARMA MODELS

The model we propose fitting in general to a time series Y(t)

is an iterated model (with symbolic transfer functions G and g.)

Y(t)- GLi Y(t) -d-- t) white noise

where Y(t) is the results of a "memory shortening" transformation

chosen to transform a long memory time series to a short memory
one, and g.is an innovation filter which is either an approximating
AR filter or an ARMA filter. Parzen (1982) introduces the
terminology ARARMA scheme for the iterated time series model with G
determined by a non-stationary autoregressive estimation procedure;

an ARIMA scheme, introduced by Box and Jenkins (1970), corresponds
to a pure differencing operator for G. Autoregressive analysis by
Yule-Walker equations yields a stationary autoregressive scheme; a

non-stationary autoregressive scheme is one which is fit by
estimating its coefficients by ordinary least squares.

To identify the final model, or "overall whitening filter", of
a time series, one should determine its model memory type, and
identify an iterative model for the time series:

IDENTIFY TIME SERIES ME4ORY TYPE

No Memory Short Memory Long Memory

(White Noise) (Stationary) (Non-stationary)
(Unpredictable) (Partially (Predictable)

Predictable)

Identify Identify
Stop Gentle

Whitening Filter Transformation

as AR(p), MA(q), to Short Memory

or APMA(D.q) 
Time Series Y

Estimate MdlYby
Parameters lWhitening Filte'I,
No Memory No Memory

Residuals c Residuals E

A confirmatory theory of statistical inference is available

only for short memory time series (which are ergodic). The
modeling or a short memory time series by a whitening filter can be

regarded as a science, and it can be made semi-automatic. Given a
sample of short memory stationary time series ?(t), our modeling
procedure in the time domain Is to compute approximating

autoregressive schemes.
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1. Form the sample correlation function

T-v. T
O(v) - Z Y(t) Y(t+v) E y (t)

t-I t=1

but do not base any decision upon it, or upon the partial
correlations. Rather, compute approximating autoregressive
schemes.

2. Solve successive order m 1 ,9 2, ... Yule Walker
equations 2 for autoregressive coefficients alt,... , ammand residual
variance a

3. i se an autoregressive order determining criterion (either
CAT or AIC) to determine d(i) and d(2), the best and second best
orders of approximating autoregressive schemes.

4. Compute PVH(h), the prediction variance horizon function
for the insight it provides on the memory type and ARMA type of the
time series. Compute horizons HOR 1, NOR 2 using approximating AR
schemes of orders (1) and 1(2).

5. Compute a subset AR model.
6. Compute a subset ARMA model.
One can also compute various spectral density functions and

spectral distribution functions if one would like the additional
insight of the spectral domain.

The diagnosis of a time series as being long memory can be
made semi-automatic. Many criteria are available to diagnose time
series memory type, using (1) correlations, (2) spectral densities,
(?) autoregressive prediction variances, (4) prediction variance
horizon function, (5) spectral distribution functions, and (6)
S-PLAY diagnostics. The definitions below are given in terms of
population parameters, assuming a stationary time series. In
practice, the diagnosis is based on sample analogues of these
parameters.

The prediction variance horizon PVH(h), h = 1, 2, ..., is
defined in terms of the normalized mean square prediction error of
infinite memory prediction h steps ahead:

2 = E Vt t)v2 2h, = E "~ EfY ht I, (t h t) =Y (t) _yl (t+h t),

Y (t+hlt) = E{Y(t+h) ]Y(t), Y(t-1), ..

A formula for a2 is obtained by introducing the MA (-)
representation of h'c

Y(t) = C(t) + 0 1(t-1) + ..... Then

h, a.( 1 h . -1
2 2

The graph of 0, increases monotonically from at h 1 to I
as h tends to..' We define

PVH(h) = I - ah , h = 1, 2,.

and define horizon NOR to be the smallest value of h for which
PVH(h) < 0.05 (whence a2 >.95).- ~~h,--9)
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The infinite moving average coefficients k are estimated by
inverting the transfer function gm(z) of an approximating
autoregressive scheme to obtain, for k 1 ,v 2, ...

aOBk + a k + ... + a 0 0

The classification of memory type by prediction horizon HOR
is:

INo Memory Short Memory Long MemoryI
HOR= 0 0 < HOR < HOR I

By NOR = we mean HOR is comparatively large: experiments lead
us to conclude that one should compare NOR with the order ORD of
the approximating autoregressive scheme. Let HOR/ORD denote the
ratio of HOR to ORD; identify time series as follows: If HOR/ORD

1 1, then MA(q), with q < HOR-1. If HOR/ORD > 4(say) and PVH
decays slowly, then long memory. If PVH declines smoothly and
exponentially, then an AR(p) is indicated. If PVH has "bends",
then ARMA. If PVH has many level stretches with periodT, then an
ARMA model is indicated of the form

I+s L+82L2+ ... +B

Y(t) 1 2 q r(t)
I-aTLT

The final identification of the orders p and q should be by
parameter estimation or by use of S-arrays.

The determination of most appropriate "gentle" transformation
of Y to Y, where Y is long memory and Y is short memory must
inevitably involve the physical nature of the observed time series.
A semi-automatic approach can be developed by considering the
following examples of long memory time series.

A time series Y(t), t = 0, + 1, ... , is called periodic with
period T, if

y(t+r) - Y(t) = 0, all t.

It follows a linear trend Y(t) = a+bt, if for all t

Y(t+1) - Y(t) = b, a constant

It is a pure harmonic of period T if for all t

Y(t) - fY(t-1) + Y(t-2) = 0, * = 2 cos 2v

Then

Y(t) = A cos 2w t + B sin 2w t
TT

As gentle memory shortening transformations, it is natural to
consider

i(t) Z Y(t) -¢ Y (t-t),()
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f(t) a Y(t) -#1Y(t-1) -4 Y(t-2) (2)
f(t) - 7(t) -f (t-(.-li -4 2Y(t-m) (3)

whose coefficients T , f(T), 4:, 62 are determined adaptively from

the data. Our first choice is (1); the lag f is chosen to
minimize over T

T T
Err(r) 1 : {Y(t) - 4(T) Y(t-T) 2) + Y (t)

t-T+1 t-T+1

and (t) is chosen to minimize over #(T)

T2
I (Y(t) - (T) Y-T)

t.T+1

The stationary correlation functionp(T) of (7(t), t 1, 2,

... , T) is defined by

T-T T 2
A(T) = Z Y(t) Y(t+r) Z I Y (t)

t= t=1
Define

v

2[SSQ(v) = I y (t)

t= 1

One can show that

(t) - 0(T) SSO(T)
SSQ(T-T)

Err(3) - 1-14(T)12 SSq(T-T)
SSQ (T) -SSQ (T)

The most significant lag lis defined as the value minimizing Err
(T).

We propose three possible actions at the initial stage of

analysis of a time series (Y(t), t = 1, ... , T):
L. Declare time series to be long memory,

and form i(t) by (1)

M. Declare time series to be moderately long

memory, and form i(t) by (2).
S. Declare time series to be short memory,_

and form i(t) a Y(t), or Y(t) = Y(t) - Y_
where T is the sample mean. After computing v one performs a

naive test to decide if It should be set equal to 0; a naive test
Is If1. _ 2o/,t where o is the sample standard deviation.

1. Compute and print f(T) and Err (T) for T =1, 2, ... , N ,

where ? Is suitably chosen (15 for yearly, quarterly, or monthly
data)s

P. Determine f . If Err(t) 8/T, go to L.
3. If#(f) _.9, andf • 2, Io to L.
N. If# (1)o .9 and f a I or 2 determine the beat fitting

non-stationary A3(2) acheme minimizing.
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T 2
r (Y(t) - *1 Y(t-1) - *2Y(t-2))

t -3

Let *" *2 denote the minimizing values of 6, and '2 Then go to
I'.

5. If 4(f) < .9 go to S.
6. if 4 (T) is approximately I for some r, one ay set this

value of T equal to f and go to L. One compares the stationary

analysis of this choice of memory shortening transformation with
that determined by the value of 1 minimizing Err (T).

7. Non-stationary prediction analysis of a time series in
general finds coefficients *i,..., #mminimizing (for a specified
memory m)

T 2
E {Y(t) - *1 Y(t-1) - -.# Y(t-m))

tm+ 1

We recommend a subset regression solution which attempts to
determine the most significant lags I . Im minimizing

Tm
T 2Tr Of(t) - ! Ylt-J ) -" " - JnYlt-Jn),2 1

t-m+ !In n J

and determines the solution for a specified set of lags .1 , ... ,

4o . One may take n : 2, and J, and J, are two adjacent lags (m-1
and m) for which *(r) is approximately 'i; one then obtains the
transformation of type (3).

A model frequently fitted to monthly economic time series is
the so-called "airline" model (see Parzen (1979)):

(I-L) (I-L 12 ) Y(t) = (I-0 L) (I-12 L12 ) C(t)

It seems doubtful that this model would be judged adequate by our
criteria, which proposes

Y(t) = (I- (12)L 1 2 ) Y(t)

g1 3 (L) i(t) = c(t)

If one desires a parsimonious ARMA model for Y(t) it may be given
by

Y(t) + ai IY(t-1) + a 12 Y(t-12) + a 1 3 Y(t-13) = c(t)

or

Y(t) + CX Y(t-1) + a 2 Y(t-2) = c(t) + 1 2 e(t-12)

It should be noted that double differencing is not recommended
by us as a memory shortening transformation. When the need for

double differencing arises, it appears as a situation in which long
memory components continue to be present even after several
iterations; then the final iterated model is of the form

YMt __D Y(1)(t) _C>_ i(2l(t) -_ £(t)
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An iterated filter model provides not only forecasts and spectral

analysis, but also model interpretation.
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Graphs of Y and Y (denoted YT) for the 33 times series listed in
Table III. The break in the graphs indicates the end of the

observed values of the time series and the beginning of predictions

of the next 18 values.

National Product & Expenditure-Residential
Construction (YAC 26)

YT

.National Product & Expenditure-Residential
Construction (YAC 26)

~Y

Machinery & Equipment (YAC 17)

YT

Machinery & Equipment (YAC 17)

.•Y



Deaths, Analysis by Age & Sex, All Ages, UKI
* (YAD 24)

YT

Crude/ BirAD 24)s(Y 5

Crude Birth Rates (YAD 15)

* - YT



19

Population Movement Male Death (YAD 6)

yI

Population Movement Male Death (YAD 6)

YT

1*



20

Industry Germany (QNI 10)

... ... .. YT

Industry Germany (QNI 10)

Y

Industrial Production: Textiles (QNI 1)

YT

Industrial Production: Textiles (QNI 1)

YT

Prices-All P.I.B. (QNG 8)

(N_
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Value of Manufacturer's New Orders for Consumer
Goods (QRC 4)

YT

Value of Manufacturer's New Orders for Consumer
Goods (QRC 4)

y

-Industrial Production: Total Austria (QRC 22)

YT

Industrial Production: Total Austria (QRC 22)

Iy

Industrial Production: Durable Manufactures (QRC 13)

I-T

VvJ.
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Industrial Production: Durable Manufactures (QRC 13)

Y

Company Data (QNM 6)

.. ... . ...- -Y T

Company Data (QMN 6)

,1/,

Company Data Germany (QNM 15)

YT

Company Data Germany (QNM 15)

, Y
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Company Data (QNM 15)

Y

Total Industrial Production (QRG 4)

.AV".YT

Total Industrial Production (QRG 4)

y

Per Capita GNP In Current Dollars (QRG 13)

4-

Per Capita GNP in Current Dollars (QRG 13)

-9---- -Y
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Company Data (MNB2)

YT

Company Data (MNB2)

Y

Company Data (MNBII)

Company Data (MNBI)

Company Data

YT
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Company Data USA (MNB38)

Company Data (MNB29)

Company Data (MNB29)

YT

Company Data (MNB20)

YT

Company Data (MNB20)

YII I I. ... Ilil A-IX.....
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Company Data (MNB56)

A
YT

Company Data (MNB56)

Company Data UK (MNB47)

YT

Company Data UK (MNB47)

i - Y

Company Data USA (MNB3B)

--y



27

General Index of the Industrial Production (MNC26)

Y

Textiles Quoted at Paris Stock Echange (MNCI7)

YT

Textiles Quoted at Paris Stock Exchange (MNC17)

Company Data (MNB65)

YT

Company Data (MNB65)

.................................................. -- , ,,, .... j
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New Private Housing Units Started Total USA (MNC44)

-- ! _YT

New Private Housing Units Started Total USA (MNC44)

y

Reserves - Danemark (MNC35)

YT

Reserves - Danemark (MN 35)

General Index of the Industrial Production (MNC26)

YT
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Industrial Production: Finished Investment
Goods Austria (MNG37)

YT

Industrial Production: Finished Investment
Goods Austria (MNG37)

Y

Industrial Production: Spain (MNG28)

'IlK.

YT

Industrial Production: Spain (MNG28)

"p
TY

Foreign Trade Exports Switzerland

YT
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Production Tin Thailand (1N122)

y

Lead Production Canada (MN1122)

YT

Lead Production Canada (MNI122)

y

Almuinium Production Netherlands (MN1103)

YT

Aluminium Production Netherlands (M1103)

¥

.. . .. i" 7 11 I11 I| ... . .. . . .. .. . . .. . . . . .. . . .. . . . . . . . . .. . . . I im o ... . . . .
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Motor Vehicles Production Canada (MNI131)

Yr

Motor Vehicles Production Canada (W4I 131)

py

•Industrie France (MNI13)

kC.

Industrie France (MNI13)

_y

Production Tin Thailand (MN122)

jf ,
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"HOW TO LEARN FROM THE JOF COMPETITION"

by

Emanuel Parzen and H. J. Newton

Institute of Statistics

Texas A&M University

The significance of the "forecasting competition" is best illustrated by
comparing it to horse racing. One may distinguish two main types of people
at the race track. Type A are bettors; they go to the track to bet on the
outcomes of the races and are concerned only with predicting winners. Type B
are lovers of knowledge; they go to enjoy the beauty of the horses (and
perhaps believe that the purpose of horse-racing is improvement of the breed!),
and are satisfied with watching the race.

From a forecasting competition, Type A people want to know who won,
which was not explicitly reported in Makridakis et al (1982). The JoF
Competition merits publication as a report of raw summaries of the results.
Realistically, the authors are not likely to take any action which implies
that half of its members are below average. It is appropriate and desirable,
to have subsequent papers that analyze and interpret the results of the
forecasting competition. We thank the authors who have provided commentaries
in this issue for the enlightenment that they have provided.

Our approach to the forecasting process is based on the belief that a
forecasting procedure should, in addition to forecasts, provide knowledge
about the "information" in the time series. Important aspects of information
are modern versions of the classic idea that a time series can be usefully
decomposed into trend, seasonal, and covariance-stationary irregular.
Parzen (1981) states that the first step in analysis of a time series is to
determine its "memory". "Short memory" corresponds to a covariance-stationary
time series for which there are available semi-automatic model identification
criteria for fitting AR, MA, and ARMA schemes which transform the "short
memory" time series to a "no memory" time series (white noise). "Long memory"
contains trend and seasonal components which one seeks to model by regression
(on other series or on deterministic functions) or non-stationary autoregression
on its past (the first AR in ARARMA).

It is our experience that the transformation of a long memory time series
to its "no memory form" has the following "uniqueness" property: if cl(t) and
C2(t) are the white noise residual time series of two different methods of
decomposition, then el(-) and C2(-) are approximately identically distributed.
One usually can conceive of several ways of transforming long memory time

*Research supported in part by the Office of Naval Research
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series to a short memory time series; the optital transformation is not a
statistical matter, but depends on how the final overall model is to be [
applied and interpreted.

Automatic AR and ARMA model identification algorithms can be used to
generate analytically several models (called "best" and "second best"), and,
thus, forecasts, based on the information contained in past data.

Forecasters should devise systems for comparisons of forecasts generated
by different procedures on the time series of interest to their organization,
rather than relying on comparisons of other time series. The publication of
such case studies should be encouraged.

Our approach to time series analysis is used in the TIMESBOARD library
of time series analysis mainline programs and computer subroutines (Newton
(1982)). TIMESBOARD provides tools for a decision-maker seeking forecasting
models developed by identifying the information and memory in the time series.
Our program DTFORE produces several sets of forecasts for each time series.
Each set is optimal in a statistical sense, depending on how the forecaster
desires to interpret the diagnostics concerning information and memory of the
series. For example, faced with the problem of forecasting a series that is
undergoing explosive growth, one can obtain a set of forecasts for continued
growth, for leveling off, and for decline. The forecaster, together with
the decision maker, can decide which method to use. Of course, the rules of
the competition demanded that we produce a single set of forecasts for each
series. This was done automatically.

The question remains, then, how to improve the results of the JoF
Competition. We have two suggestions.

First, produce plots of the various forecasts appended one above the
other, together with the true future values. Obviously, publishing such a
graph for 1001 series is impractical. However, a representative sample of
each type could be published.

Secondly, forecasting methods are, in our opinion, best compared by
forming the time series of forecast errors and studying them. An approach
to studying distributions of errors are the quantile and functional
statistical inference methods being developed by Parzen (1979) that compute
medians, inter-quartile ranges, and various measures of distributional shape.
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